Topic outline
-
本课程面向教育技术学专业的硕士和博士研究生,聚焦CS-STEM教育(Computer Science-STEM),尤其是K12阶段,主要研读教育技术领域国际顶级期刊Computers & Education、International Journal of STEM Education、British Journal of Educational Technology、Journal of Computer Assisted Learning、Educational Technology Research and Development等发表的相关最新文章。本课程目标是掌握国际CS-STEM教育领域高水平研究的研究范式和写作方法,包括研究问题的提出,理论框架的构建,研究方法的设计,研究数据的分析,研究结果的讨论,以及研究结论的描述等等。在本课程学习中,学生需要每周独立阅读指定文献。
-
一、理论框架
- 整合性STEM概念框架:Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM education, 3, 1-11. https://doi.org/10.1186/s40594-016-0046-z 【构建了整合性STEM教育的滑轮式框架,包括情境化的STEM学习、工程设计、数学思维、技术素养和科学探究,以及实践共同体。】
- STEM概念框架:Yata, C. , Ohtani, T. , & Isobe, M. (2020). Conceptual framework of STEM based on Japanese subject principles. International Journal of STEM Education, 7,12. https://doi.org/10.1186/s40594-020-00205-8 【研究中提到了6E模型、PIRPOSAL模型】
- CT-STEM的迁移效应(系统性文献综述+元分析):Li, Z., Oon, P.T. (2024). The transfer effect of computational thinking (CT)-STEM: a systematic literature review and meta-analysis. IJ STEM Ed 11, 44. https://doi.org/10.1186/s40594-024-00498-z 【通过系统性文献综述和元分析方法分析了CT-STEM(将CT融入STEM教育)对认知和非认知益处发展的迁移效应】
二、教学法(CDIO)
- STEM教学设计:Halawa, S., Lin, T. C., & Hsu, Y. S. (2024). Exploring instructional design in K-12 STEM education: a systematic literature review. International Journal of STEM Education, 11(1), 43. https://doi.org/10.1186/s40594-024-00503-5【STEM 教育主要强调参与度和职业选择以及 STEM 素养,文献综述发现,基于设计的学习比基于探究、基于项目或基于问题的学习更多地被采用,这种教学设计主要用于实现 STEM 素养】
- DT-CDIO(单组准实验研究-PLS结构方程模型):Lai, C. F., Zhong, H. X., & Chiu, P. S. (2021). Investigating the impact of a flipped programming course using the DT-CDIO approach. Computers & Education, 173, 104287. https://doi.org/10.1016/j.compedu.2021.104287【将设计思维与CDIO相结合,应用于翻转编程课堂中,并分析了心流体验、计算思维以及认知负荷的关系】
- DT-CDIO(准实验研究-量化和开放问题):Lai, CF., Zhong, HX., Chang, JH. et al. (2022). Applying the DT-CDIO engineering design model in a flipped learning programming course. Education Tech Research Dev 70, 823–847.https://doi.org/10.1007/s11423-022-10086-z【将设计思维与CDIO相结合并应用于Web编程课程的翻转课堂教学中,分析了对学生计算思维能力和学习成绩的影响。】
- EP-CDIO(准实验研究-重复测量方差分析、认知网络分析):Xi, FF., Ma, HL.*(马红亮), Pi, ZL. et al. (2024). Integrating the engineering design process into the conceive-design-implement-operate model for promoting high school students’ STEM competence. Educational Technology Research and Development. https://doi.org/10.1007/s11423-024-10377-7 【将CDIO与工程设计相结合,研讨了该教学模式对高中生STEM能力的影响】
- 整合性STEM概念框架:Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM education, 3, 1-11. https://doi.org/10.1186/s40594-016-0046-z 【构建了整合性STEM教育的滑轮式框架,包括情境化的STEM学习、工程设计、数学思维、技术素养和科学探究,以及实践共同体。】
-
一、概述
- 如何开展人工智能教育(系统性文献综述):Liu, X., & Zhong, B. (2024). A systematic review on how educators teach AI in K-12 education. Educational Research Review, 45, 100642. https://doi.org/10.1016/j.edurev.2024.100642【通过系统性文献综述,梳理了国际K-12人工智能教育的研究前沿、实践现状与发展趋势】
- AI教育学习任务设计(文献综述):Li, L., Fengchao, Y., & Zhang, E. (2024). A systematic review of learning task design for K-12 AI education: Trends, challenges, and opportunities. Computers and Education: Artificial Intelligence, 100217. https://doi.org/10.1016/j.caeai.2024.100217 【K-12人工智能教育学习任务设计,本文献综述的目的是探讨K12 AI教育的现状:话题、教学方法、教学成果】
- AI素养框架(系统性文献综述):Chee, H., Ahn, S., & Lee, J. (2024). A Competency Framework for AI Literacy: Variations by Different Learner Groups and an Implied Learning Pathway. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13556【通过系统性文献综述,开发一个人工智能素养能力框架,该框架根据不同的学习者群体(为高等教育、K-12教育、普通公民)有所区别。】
- AI核心素养与机器人教育(准实验研究-调查和访谈):Su, J., & Yang, W. (2024). AI literacy curriculum and its relation to children’s perceptions of robots and attitudes towards engineering and science: An intervention study in early childhood education. Journal of Computer Assisted Learning, 40(1), 241–253. https://doi.org/10.1111/jcal.12867【AI素养课程对幼儿园机器人感知和工程、科学的态度】
二、测评
- 中学生AI素养量表(问卷编制):Zhong, B., & Liu, X. (2024). Evaluating AI literacy of secondary students: Framework and scale development. Computers & Education, 105230. https://doi.org/10.1016/j.compedu.2024.105230 【构建了中学生人工智能素养的KAT框架,并编制了测评问卷,共56题项,指标要素为:人工智能知识(人工智能基础、人工智能技术要素、人工智能技术应用);人工智能情感(人工智能与人类、人工智能与社会);人工智能思维(工程设计思维、计算思维)】
三、教学法
- 技术增强的具身学习(准实验研究-课堂观察、教师访谈、文件/作品):Yang et al. (2023). Artificial intelligence education for young children: A case study of technology-enhanced embodied learning. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12892【在智能代理支持下儿童如何参与人工智能素养活动】
- 具身、类比和颠覆(准实验研究-前后测半结构化访谈-非参数配对样本检验):Dai, Y., Lin, Z., Liu, A., & Wang, W. (2024). An embodied, analogical and disruptive approach of AI pedagogy in upper elementary education: An experimental study. British Journal of Educational Technology, 55(1), 417-434. https://doi.org/10.1111/bjet.13371【研究提出了一种具身、类比和颠覆 (EAD) 方法来提高学生对 AI 的理解。研究结果表明,与传统的纯AI直接教学方法相比,EAD 方法在学生理解方面的收益在统计学上更为显著。定性分析显示了EAD方法在支持学生参与、抽象思维和系统思维方面的优势,以及其在认知超载和沟通问题方面的局限性】
- 如何开展人工智能教育(系统性文献综述):Liu, X., & Zhong, B. (2024). A systematic review on how educators teach AI in K-12 education. Educational Research Review, 45, 100642. https://doi.org/10.1016/j.edurev.2024.100642【通过系统性文献综述,梳理了国际K-12人工智能教育的研究前沿、实践现状与发展趋势】
-
一、概述
- AI在各学科的应用(文献综述):Martin, F., Zhuang, M., & Schaefer, D. (2023). Systematic review of research on artificial intelligence in K-12 education (2017–2022). Computers and Education: Artificial Intelligence, 100195. https://doi.org/10.1016/j.caeai.2023.100195 【AI在K-12教育中的作用和影响】
- 对学生参与的影响(文献综述):Lo, C. K., Hew, K. F., & Jong, M. S. Y. (2024). The influence of ChatGPT on student engagement: A systematic review and future research agenda. Computers & Education, 105100. https://doi.org/10.1016/j.compedu.2024.105100 【Chatgpt对学习者学习投入的影响】
- 人工智能在跨学科学习中的系统研究(文献综述):Cai, C., Zhu, G. & Ma, M. A systemic review of AI for interdisciplinary learning: Application contexts, roles, and influences. Educ Inf Technol (2024). https://doi.org/10.1007/s10639-024-13193-x【在跨学科学习中,人工智能的应用形式、学习环境、应用条件、扮演角色以及对学生和教师的影响】
二、ChatGPT赋能编程教育
- 促进学生编程(准实验研究-平台监控日志记录学生的屏幕行为;视频编码分析+问卷调查):Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would ChatGPT-facilitated programming mode impact college students’ programming behaviors, performances, and perceptions? An empirical study. International Journal of Educational Technology in Higher Education, 21(1), 14. https://doi.org/10.1186/s41239-024-00446-5【ChatGPT,编程学习,行为分析,感知,大学生】
- 风险管理策略(文献综述;SWOT分析):Humble, N. Risk management strategy for generative AI in computing education: how to handle the strengths, weaknesses, opportunities, and threats?. Int J Educ Technol High Educ 21, 61 (2024). https://doi.org/10.1186/s41239-024-00494-x【计算机教育中生成式人工智能的风险管理策略:如何应对优势、劣势、机遇和威胁?】
- 增强学生学习(文献综述):Deng R., Jiang M., Yu X., Lu Y. & Liu S., Does ChatGPT enhance student learning? A systematic review and meta-analysis of experimental studies, Computers & Education, https://doi.org/10.1016/j.compedu.2024.105224.【从学习成绩、情感激励状态、高阶思维倾向、脑力劳动、自我效能感等方面探讨ChatGPT 能否促进学生的学习】
- 自动评分:Alkafaween, U., Albluwi, I. and Denny, P. (2025), Automating Autograding: Large Language Models as Test Suite Generators for Introductory Programming. J Comput Assist Learn, 41: e13100. https://doi.org/10.1111/jcal.13100【与教师创建的测试套件相比,评估使用大语言模型为CS1级编程问题自动生成测试套件的有效性】
三、ChatGPT赋能科学教育
- 促进学生自主学习和科学教育(准实验研究-回归分析):Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). Empowering student self‐regulated learning and science education through ChatGPT: A pioneering pilot study. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13454【本实验比较了两种AI(生成式AI和基于规则的AI)在科学教育中对学习者自我调节学习的影响】
- AI在各学科的应用(文献综述):Martin, F., Zhuang, M., & Schaefer, D. (2023). Systematic review of research on artificial intelligence in K-12 education (2017–2022). Computers and Education: Artificial Intelligence, 100195. https://doi.org/10.1016/j.caeai.2023.100195 【AI在K-12教育中的作用和影响】
-
一、概述
- 趋势和研究焦点(文献综述):Darmawansah, D., Hwang, GJ., Chen, MR.A. et al. (2023). Trends and research foci of robotics-based STEM education: a systematic review from diverse angles based on the technology-based learning model. International Journal of STEM Education, 10, 12 . https://doi.org/10.1186/s40594-023-00400-3【机器人技术在STEM教育中的作用和研究趋势】
- 效果分析(文献综述):Ouyang, F., Xu, W. (2024) The effects of educational robotics in STEM education: a multilevel meta-analysis. International Journal of STEM Education, 11, 7. https://doi.org/10.1186/s40594-024-00469-4【教育机器人在K-16教育中的总体效果】
- 无人机的教学法和学习结果(文献综述):Yeung, et al. (2024). A systematic review of Drone integrated STEM education at secondary schools(2005-2023): Trends pedagogies, and learning outcomes. Computers & Education. https://doi.org/10.1016/j.compedu.2024.104999【无人机整合STEM教育在不同学术水平上的应用,特别侧重于中等教育领域】
二、计算思维培养
- 计算思维与积极学习行为(准实验研究):Zhang, X., Chen, Y., Hu, L., Bao, Y., Tu, Y. F., & Hwang, G. J. (2024). A metaphor-based robot programming approach to facilitating young children’s computational thinking and positive learning behaviors. Computers & Education, 215, 105039. https://doi.org/10.1016/j.compedu.2024.105039 【本研究提议了基于隐喻的机器人编程方法(metaphor-based robot programming (MRP) approach),探讨此机器人编程方法对学习者编程思维和行为模式的影响】
- 计算思维的知识迁移(准实验研究-出声思维、学术反思、学习表现):Chichekian, T. et al. (2023). Experimenting with computational thinking for knowledge transfer in engineering robotics. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12921【虚拟Arduino机器人培养工程类大学生计算思维的应用研究,设计了6个机器人活动】
- 图形化编程的调试行为(准实验研究):Socratous, C., Ioannou, A. (2021). Structured or unstructured educational
robotics curriculum? A study of debugging in block-based programming.
Education Tech Research Dev , 69, 3081–3100. https://doi.org/10.1007/s11423-021-10056-x【结构化和非结构化教育机器人课程对学生编程错误频率、调试能力和学习参与度的影响】
- 乡村小学生的自我效能与计算思维(准实验研究):Shang, X., Jiang, Z., Chiang, F. K., Zhang, Y., & Zhu, D. (2023). Effects of robotics STEM camps on rural elementary students’ self-efficacy and computational thinking. Educational technology research and development, 71(3), 1135-1160. https://doi.org/10.1007/s11423-023-10191-7【研究采用单组前后测准实验研究,探究了为期3天的机器人STEM夏令营对乡村地区小学三、四年级学生自我效能感和计算思维的影响,课程内容是围绕“神农尝百草”的STEM系列内容,涉及中草药学习、乐高搭建和编程应用(具体课程内容见文中附录一)。】
- 批判思维、合作和创造性(文献综述):Rapti,S., & Sapounidis,T.(2023). “Critical thinking, Communication, Collaboration, Creativity in kindergarten with Educational Robotics”: A scoping review (2012–2023) . Computers & Education,210, 104968. https://doi.org/10.1016/j.compedu.2023.104968
- 合作行为模式(准实验研究): Sisman,B., Kucuk, S., & Ozcan, N. (2022). Collaborative behavioural patterns of elementary school students working on a robotics project. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12659【教育机器人在协作学习中的作用】
- 合作与竞争(准实验研究):Zhong, BC., & Xia LY. (2022). Effects of new coopetition designs on learning performance in robotics education. Journal of Computer Assisted Learning. 1,(38). https://doi.org/10.1111/jcal.12606【针对小学5-6年级,开展了2个阶段的准实验研究,融合了游戏化的奖励机制,研究了不同合作竞争设计对学生机器人教育中小组内合作和小组间竞争的影响】
三、教学法
- 6E模式(准实验研究):Hsiao, H. S. , Chen, J. H. , Chang, T. L. , Li, P. H. , & Chung, G. H. . (2024). A study on the effects of using the 6E model and a robot teaching assistant on junior high school students' STEM knowledge, learning motivation, and hands-on performance. Journal of Science Education and Technology, 33, 759–778. https://doi.org/10.1007/s10956-024-10119-7 【本研究使用机器人助教来提高八年级学生在以“智能城市”为主题的实践类STEM活动中的学习效率。该研究在12周内对103名参与者进行了准实验设计,实验组使用6E模型并结合机器人助教,对照组仅使用6E模型】
-
一、概述
- 趋势、挑战与未来(社评):Ioannou, A., Gravel, B.E. (2024). Trends, tensions, and futures of maker education research: a 2025 vision for STEM+ disciplinary and transdisciplinary spaces for learning through making. Education Tech Research Dev 72, 1–14 (2024).https://doi.org/10.1007/s11423-023-10334-w 【概述当下的创客教育研究,揭示挑战以及未来的策略】
- 创客空间应用调查(混合研究-观察、访谈、反思日志等质性数据):Falloon, G., Forbes, A., Stevenson, M. et al. (2022). STEM in the Making? Investigating STEM Learning in Junior School Makerspaces. Research in Science Education, 52, 511–537. https://doi.org/10.1007/s11165-020-09949-3
- 学校变革(案例分析-采访):Chen, O., Campos, F. & Bergner, Y. (2024). A Makerspace walks into a high-school: a case study of the micropolitics of school reform. Education Tech Research Dev 72, 385–403. https://doi.org/10.1007/s11423-023-10268-3【本研究采访了学校校长和教师,调查了他们对创客教育改革的想法和动力,以及创客教育带来的改变】
二、科学教育
- 物理材料设计:Fernandez, C., Hochgreb-Haegele, T., Eloy, A., & Blikstein, P. (2024). Making for science: a framework for the design of physical materials for science learning. Educational Technology Research and Development, 72, 59-82. https://doi.org/10.1007/s11423-023-10340-y. 【科学学习中的物理材料设计以及其与学生认知能动性之间的关系】
三、技术教育
- STEM整合行为(调查研究-结构方程模型PLS):TKu, CJ., Hsu, YS., Chang, MC. et al. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9, 3. https://doi.org/10.1186/s40594-021-00321-z 【创客类STEM综合】
- 3D打印(多层模型分析):Cheng, L. , Antonenko, P. D. , et al. (2020). Exploring the influence of teachers' beliefs and 3D printing integrated STEM instruction on students' STEM motivation. Computers & Education, 103983. https://doi.org/10.1016/j.compedu.2020.103983
- 3D设计(准实验研究-三个实验组,前后测+操作日志和作品):Dasgupta, C. , Magana, A. J. , & Vieira, C. . (2019). Investigating the affordances of a CAD enabled learning environment for promoting integrated STEM learning. Computers & Education, 129, 122-142. https://doi.org/10.1016/j.compedu.2018.10.014 【研究了3维空间中的设计对中学生整合性STEM的影响】
四、工程教育
- 工程身份认同(质性多个案研究-焦点小组访谈+小组录像+定量前后测+日志绘画分析):Hsu, P. S., Lee, E. M., & Smith, T. J. (2024). Exploring non-dominant youths' engineering identity through productive struggle in a making summer program. Educational Technology Research and Development, 72, 83-107. https://doi.org/10.1007/s11423-023-10299-w. 【以15名中学生为期1周的暑期创客夏令营活动为个案,分析了其中的富有成效的努力如何对学习者对工程认同产生影响】
- 父母支持(自然主义观察法):Kim, S. H., & Simpson, A. (2024). Parents' epistemic supports during home-based engineering design tasks: opportunities and tensions through the use of technology. Educational Technology Research and Development, 72, 209-238. https://doi.org/10.1007/s11423-023-10322-0.【研究以引导参与的概念为基础,将工程学习和创客学习通过多种互动共同构建】
五、数学教育
- 数学参与(案例分析):Thompson, N. (2023). Weaving in: shifts in youth mathematical engagement through weaving. Educational Technology Research and Development, 72, 15-39. https://doi.org/10.1007/s11423-023-10316-y. 【在数学课堂中引入编织活动来促进数学学习】
六、人文艺术教育
- 音乐教育(准实验研究):Petrie, P. (2022). Programming music with Sonic Pi promotes positive attitudes for beginners. Computers & Education,179, 104409. https://doi.org/10.1016/j.compedu.2021.104409 【编程+音乐】
- 音乐教育(准实验研究):Hu,C. , Yeh, H. , & C. N. (2020). Enhancing STEM competence by making electronic musical pencil for non-engineering students. Computers & Education, 150. https://doi.org/10.1016/j.compedu.2020.103840 【针对英语专业大学生的准实验研究,让学生做电子音乐笔,将能力框架KSA和布鲁姆目标分类结合在一起,测量学生的STEM能力】
- 语言教育(案例分析-作品+访谈):Axelrod, D., & Kahn, J. (2023). “Then you go to snap”: Multimodal making of digital comics in a language arts high school classroom. Educational Technology Research and Development, 72, 41-57. https://doi.org/10.1007/s11423-023-10285-2. 【跨学科课堂设计】
七、数字工具使用
- 学习分析工具(实验研究-独立样本t检验+相关性分析):Davis, R. L., Schneider, B., Rosenbaum, L. F., & Blikstein, P. (2024). Hands-on tasks make learning visible: a learning analytics lens on the development of mechanistic problem-solving expertise in makerspaces. Educational Technology Research and Development, 72, 109-132. https://doi.org/10.1007/s11423-023-10318-w. 【研究探讨了高中生学习者参加为期一年的数字制造课程如何影响解决问题的能力】
- 数字评价工具(探索性案例研究-exploratory case study):Miliou, O., Adamou, M., Mavri, A., & Ioannou, A. (2024). An exploratory case study of the use of a digital self-assessment tool of 21st-century skills in makerspace contexts. Educational Technology Research and Development, 72, 239-260. https://doi.org/10.1007/s11423-023-10314-0.【创客空间中使用数字自我评估工具】
- 虚拟现实(准实验研究-协方差分析、滞后序列分析):Chen, J-C., Huang, Y. , Lin, K-Y., et al. (2020). Developing a hands‐on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning(11). 1-15. https://doi.org/10.1111/jcal.12389 【研究以10年级学生为对象,整合VR技术、6E模式和STEM教育,开发了动手实践活动。其中,实验组使用VR技术学习知识,对照组学生接受讲座,来探究活动对学生STEM认知知识、动手实践能力及学习行为的影响。】
-
一、科学教育
- 职前科学教师的建模教学能力培养(文献综述):Chan, K. K. H., Lau, D. S. P., & van Driel, J. (2024). Different
Designs, Different Outcomes? A Critical Systematic Review of
Interventions for Preparing Preservice Science Teachers to Teach
Scientific Models and Modeling. Science Education. https://doi.org/10.1002/sce.21911【该系统性综述深入剖析了一系列干预措施,这些措施旨在通过设计张力的视角,为职前科学教师提供有效准备,使他们能够熟练地教授科学模型与建模】
- 建模实践的模式构建:Garrido, A., & Couso, D. (2024). The IPM cycle: An instructional tool for promoting students' engagement in modeling practices and construction of models. Journal of Research in Science Teaching. https://doi.org/10.1002/tea.21979【提出了Instruction Performance Modeling (IPM)循环。通过实验验证了在 IPM 循环指导的教学场景中发生的丰富、有意义和富有成效的建模实践 】
- 职前科学教师的建模教学能力培养(文献综述):Chan, K. K. H., Lau, D. S. P., & van Driel, J. (2024). Different
Designs, Different Outcomes? A Critical Systematic Review of
Interventions for Preparing Preservice Science Teachers to Teach
Scientific Models and Modeling. Science Education. https://doi.org/10.1002/sce.21911【该系统性综述深入剖析了一系列干预措施,这些措施旨在通过设计张力的视角,为职前科学教师提供有效准备,使他们能够熟练地教授科学模型与建模】
-
一、气候变化教育概述
- 美国气候变化教育的政策文本分析(文献法)da Rosa, J.A. (2024), Twenty-Years of Anti-Climate Change and Anti-Evolution Education Legislation in the United States. Science Education, https://doi.org/10.1002/sce.21907 【采用历史定性研究设计,通过文件分析来评估美国各州的立法和国家科学教育中心(NCSE)的报告,揭示了美国基础教育应用气候变化教育的两极分化现象】
- 5E教学法在小学气候变化教育中的应用(准实验研究)Karpudewan, M., Roth, W., & Abdullah, M. N. S. B. (2014). Enhancing Primary School Students’ Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities. International Journal of Science Education, 37(1), 31–54. https://doi.org/10.1080/09500693.2014.958600【围绕着气候变化教育,针对小学5年级学生,实验班采用5E教学法,对照班采用传统的讲授法,评估了学生们在全球变暖知识、环境态度两方面的变化情况以及知识和态度之间关系。】
二、科创教育与气候变化教育的融合
- 机器人教育与可持续城市项目(准实验研究):Vicente, F. R., Llinares, A. Z. & Sánchez, N. M.(2020). “Sustainable City”: A Steam Project Using Robotics to Bring the City of the Future to Primary Education Students. Sustainability,12(22), 9696. https://doi.org/10.3390/su12229696【基于教育机器人的跨学科STEAM项目——“可持续城市”,旨在让小学生通过实践活动深刻感知气候变化的问题,并高效利用资源以减少环境影响。五年级的30名小学生参与了该项目,项目共包含14节课,采用了项目式学习、合作学习和翻转课堂等多种教学策略。】
- 热成像技术在气候变化教育中的应用(实验研究):Kumar, P., Sahani, J., Rawat, N., Debele, S., Tiwari, A., etc. (2023). Using empirical science education in schools to improve climate change literacy. Renewable and Sustainable Energy Reviews, 178, 113232. https://doi.org/10.1016/j.rser.2023.113232【使用热成像技术让小学生探究城市的热量,在动手实践中学习气候变化的科学知识,增强他们的学习兴趣。】
-
一、性别差异
-
性别差异(元分析):Yu, W. et al. (2023). Interventions for gender equality in STEM education: A meta-analysis. Journal of Computer Assisted Learning . https://doi.org/10.1111/jcal.12928
二、职业兴趣
- 中学生STEM职业兴趣的纵向研究(大数据纵向分析): Nitzan-Tamar, O., & Kohen, Z. (2022). Secondary school mathematics and entrance into the STEM professions: A longitudinal study. INTERNATIONAL JOURNAL OF STEM EDUCATION, 9(1). https://doi.org/10.1186/s40594-022-00381-9.【以社会认知职业理论(Social Cognitive Career Theory, SCCT)的总体理论框架为基础,研究53万名以色列中学生从事 STEM 相关职业的各种专业发展途径,并根据各种人口和教育因素来描述每种途径的特点。】
三、职业兴趣与性别的关系分析
- 高中生对STEM职业兴趣的性别差异(结构方程模型,多群组分析,中介效应分析):Wang, N., Tan, A. L., Zhou, X., Liu, K., Zeng, F., & **ang, J. (2023). Gender differences in high school students’ interest in STEM careers: A multi-group comparison based on structural equation model. International Journal of STEM Education, 10(1), 59. https://doi.org/10.1186/s40594-023-00443-6【该研究通过STEM自我效能和STEM职业感知的中介作用,探索了环境因素(学校教育、非正式教育、社会支持和媒体)对高中生对STEM职业兴趣的影响的性别差异。】
- 中学生对STEM职业的兴趣及其与性别、成绩和家庭规模的关系(结构方程模型):Balta, N., Japashov, N., Mansurova, A., Tzafilkou, K., Oliveira, A. W., & Lathrop, R. (2023). Middle‐and secondary‐school students' STEM career interest and its relationship to gender, grades, and family size in Kazakhstan. Science Education, 107(2), 401-426.https://doi.org/10.1002/sce.21776【对396名7至12年级的哈萨克学生进行分析,研究发现学生对STEM职业的兴趣涉及内部因素(例如自我效能)和外部因素(例如性别刻板印象)之间的复杂相互作用。】
- 基于社会认知视角分析STEM在自我效能、兴趣和愿望方面的性别差异(结构方程模型,中介效应分析,调节效应分析):Chan, R.C.H.(2022). A social cognitive perspective on gender disparities in self-efficacy, interest, and aspirations in science, technology, engineering, and mathematics (STEM): the influence of cultural and gender norms. International Journal of STEM Education, 9, 37 . https://doi.org/10.1186/s40594-022-00352-0【该研究利用性别作为调节变量发现,由于社会认知中的性别刻板印象,与男生相比,女生不太可能意识到她们有能力在数学、科学和技术任务中做得很好,这是使女生对STEM失去兴趣的原因】
职业认知对STEM职业兴趣的影响:自我效能、结果期待与性别的作用(链式中介、多群组结构方程模型):Jiang, H., Zhang, L., & Zhang, W. (2024). Influence of career awareness on STEM career interests : examining the roles of self efficacy , outcome expectations , and gender. International Journal of STEM Education, 11(22), 1–21. https://doi.org/10.1186/s40594-024-00482-7【该研究基于社会职业认知理论构建研究框架,分析职业认知、自我效能、结果期待、性别对不同类型STEM职业兴趣的作用机制。通过对2542名中国高中生的调查,基于结构方程模型和多群组结构方程模型的分析,结果发现:STEM职业认知对分析型STEM职业兴趣的影响完全由STEM课程自我效能感和结果期待所中介;STEM职业认知对“生命生存”型(如生物科学、地球科学)和“生命健康”型(如医学)STEM职业的兴趣由自我效能和结果期待部分中介。另外,研究发现STEM职业兴趣存在明显的性别差异,具体体现是:男生对分析型STEM职业的兴趣显著高于女生,女生对生命健康型STEM职业的兴趣略高于男生,男生和女生对生命生存型STEM职业兴趣的水平相近。职业认知、自我效能和结果期待对STEM职业兴趣的作用机制在不同性别间保持一致。】
四、职业兴趣的培养策略
基于真实项目的学习对大学生STEM学习态度和职业抱负的影响(准实验研究):Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., & Gilberto, J. M. (2019). The effect of authentic project-based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3–23. https://doi.org/10.1002/tea.21465【研究发现,在大学前四个学期至少参加一门基于真实项目的课程将会增强学生对STEM技能的认知、对STEM课程的效用价值,以及STEM的职业抱负。】
基于3D打印重复建模STEM项目培养学生的想象力和职业兴趣(准实验研究):Lin, K. Y., Lu, S. C., Hsiao, H. H., Kao, C. P., & Williams, P. J. (2023). Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling. Interactive Learning Environments, 31(5), 2884–2898. https://doi.org/10.1080/10494820.2021.1913607【3D打印重复建模的跨学科STEM活动显著提高了高中生对技术和工程职业的兴趣,但是对科学和数学领域的职业兴趣没有显著的影响。】
STEM职业兴趣专刊(special issue):Journal for STEM Education Research. 该专刊集中讨论STEM职业兴趣的各类影响因素、性别差异、干预措施等。https://link.springer.com/journal/41979/volumes-and-issues/8-1
-