主题目录

  •      本课程面向教师教育学硕士和博士研究生的一门课程,聚焦K-12阶段STEM(Science, Technology, Engineering, and Math)教师的专业发展,尤其以在职(in-service)教师为主。主要研读国际顶级期刊《Teaching and Teacher Education》、《Computers & Education》、《International Journal of STEM Education》、《British Journal of Educational Technology》、《Educational Technology Research and Development》等发表的相关最新文章。本课程以教师讲解与学生研读相结合的方式开展,每周一篇教师专业发展的研究文献,共计18篇。


    • 任何有关学习这门课程的问题、意见和建议等等

  • 单元1 STEM教师的TPACK知识

    1.  

      个案研究法(一位教师2节科学课的录像和访谈文本分析): Gao, S., Damico, N., & Gelfuso, A. (2021). Mapping and reflecting on integration of the components of pedagogical content knowledge (PCK) for teaching natural selection: A case study of an experienced middle-school science teacher. Teaching and Teacher Education, 107, 103473. https://doi.org/10.1016/j.tate.2021.103473.【基于科学教学的PCK五边形理论,对一位经验丰富的中学科学教师在教授自然选择课程时教学案例的详细分析,来探究如何在实践反思中整合PCK的不同要素。】


    2. 纵向研究+主题分析法(Thematic Analysis): Kong, S.-C., Lai, M., & Li, Y. (2023). Scaling up a teacher development programme for sustainable computational thinking education: TPACK surveys, concept tests and primary school visits. Computers & Education, 194, 104707. https://doi.org/10.1016/j.compedu.2022.104707【本报告包括两项研究。研究1报告了两个12小时课程的有效性,分别使用ScratchApp Inventor编程环境来发展教师的CT能力,涉及来自47所小学的245名教师。该项目融入了教学实践,使用TPACK框架,显著提升了教师与内容相关的知识维度。研究2通过主题分析,报告了通过94次学校访问在47所学校中实施的CT策略。研究教师们在参加完PD项目后是如何实施该倡议的】
    3. 横断面在线研究+自选抽样法: Fabian, A., Fütterer, T., Backfisch, I., Lunowa, E., Paravicini, W., Hübner, N., & Lachner, A. (2024). Unraveling TPACK: Investigating the inherent structure of TPACK from a subject-specific angle using test-based instruments. Computers & Education, 105040. https://doi.org/10.1016/j.compedu.2024.105040【利用基于测试的工具调查职前教师的TPCK的实证特性,从特定学科的角度探索TPCK的本质,即它与PCKTK的关系并检验基于测试的TPCK和自我报告的TPCK之间的关系,探讨可能的相关因素】
    4. 半结构化访谈+问卷调查: Max, A.-L., Lukas, S., & Weitzel, H. (2023). The pedagogical makerspace: Learning opportunity and challenge for prospective teachers’ growth of TPACK. BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY. https://doi.org/10.1111/bjet.13324.【该研究通过描述未来教师在创客空间工作的结果如何改变他们的TPACK和与TPACK相关的态度来解决这一问题,并阐明他们在项目工作中遇到了哪些挑战。此外,该研究还展示了未来教师用来应对感知挑战的策略】

    扩展阅读
    • 准实验实地研究: Lachner, A., Fabian, A., Franke, U., Preiß, J., Jacob, L., Führer, C., Küchler, U., Paravicini, W., Randler, C., & Thomas, P. (2021). Fostering pre-service teachers’ technological pedagogical content knowledge (TPACK): A quasi-experimental field study. Computers & Education, 174, 104304. https://doi.org/10.1016/j.compedu.2021.104304.【该研究调查在常规的专门针对学科的大学职前教师教育课程中实施和适应短期三周的TPACK模块,是否可以增强职前教师获取TPACK和与技术相关的动机。TPACK模块基于SQD模型和教师教育的一般原则】
    • 在线问卷调查Scherer, R., Tondeur, J., & Siddiq, F. (2017). On the quest for validity: Testing the factor structure and measurement invariance of the technology-dimensions in the Technological, Pedagogical, and Content Knowledge (TPACK) model. Computers & Education, 112, 1–17. https://doi.org/10.1016/j.compedu.2017.04.012.【该研究考察了一种评估职前教师在与技术相关的TPACK维度(“T维度)中自我效能的测量方法。调查了其因子结构,并在性别和教育轨迹这两个可能表明显著差异的子组中测试了其测量不变性】

    • 质性研究+开放式编码: Kim, H., Song, J., & Ha, S. (2024). TPACK expression patterns in preservice teachers’ design of innovative physics teaching and learning materials. Journal of Computer Assisted Learning, jcal.12965. https://doi.org/10.1111/jcal.12965.【该研究调查了韩国一所师范学院22名四年级职前教师在设计创新物理教学材料中的技术整合,旨在分析职前教师的TPACK是如何通过PCKTPKTCK三个组成部分与TK的交叉来实现的,以考察在开发创新物理教学材料的实践过程中TPACK的表达模式】
    • 在线问卷调查: Lachner, A., Backfisch, I., & Stürmer, K. (2019). A test-based approach of Modeling and Measuring Technological Pedagogical Knowledge. Computers & Education, 142, 103645. https://doi.org/10.1016/j.compedu.2019.103645.【探讨一种新开发的基于测试的工具来评估教师TPK的概念性和情境性,还调查了TPK可用性的认知条件】
    • 系统性文献综述+元分析: Schmid, M., Brianza, E., Mok, S. Y., & Petko, D. (2024). Running in circles: A systematic review of reviews on technological pedagogical content knowledge (TPACK). Computers & Education, 105024. https://doi.org/10.1016/j.compedu.2024.105024.全面概述TPACP研究现状,并确定TPACK研究的发展和趋势】

    • 混合研究(定性+电话访谈+深度访谈): Tondeur, J., Scherer, R., Siddiq, F., & Baran, E. (2020). Enhancing pre-service teachers’ technological pedagogical content knowledge (TPACK): A mixed-method study. Educational Technology Research and Development, 68(1), 319–343. https://doi.org/10.1007/s11423-019-09692-1.该研究探索定性证据综合模型(SQD)为职前教师的教师培训(TTIs) 做准备的6个策略以及个人因素(对信息与传播技术的态度) TPACK 之间的关系。先是定性分析SQD中包含的6个策略。之后又对比利时 688 名毕业班职前教师进行了抽样调查,深入地了解 6 种策略的性质及其对 TPACK 的影响】

  • 单元2 STEM教师的课堂教学行为

    1. 视频录像与半结构化访谈:Kim, C., Vasconcelos, L., Belland, B.R. et al. (2022). Debugging behaviors of early childhood teacher candidates with or without scaffolding. International Journal of Educational Technology in Higher Education, 19.https://doi.org/10.1186/s41239-022-00319-9研究幼儿教师如何学习使用和不使用脚手架来编程和调试基于块的代码,从而探究在基于块的编程期间幼儿教师之间的调试方法有何差异
    2. 皮尔逊相关分析、结构方程模型(影响因素)Dong, Y. et al. (2020). Understanding intrinsic challenges to STEM instructional practices for Chinese teachers based on their beliefs and knowledge base. International Journal of STEM Education, 7(1)https://doi.org/10.1186/s40594-020-00245-0基于信念和知识基础,探究中国教师 STEM 教学实践的内在挑战
    3. 工具性案例研究设计Park, J., Teo, T.W., Teo, A. et al. (2023).Integrating artificial intelligence into science lessons: teachers’ experiences and views. International Journal of STEM Education,10, 61,  https://doi.org/10.1186/s40594-023-00454-3在科学课堂试用介绍人工智能概念的新的课程包,来自不同学校的三名科学教师对学生进行了小组试点,并就材料和实施情况获取教师的反馈
    4. 质性研究:Preminger,L.,  Hayes, K. N., Bae, C. L., &  O'Connor, D.  (2024).  Why do teachers vary in their instructional change during science PD? The role of noticing students in an iterative change process. Science Education. https://doi.org/10.1002/sce.21853小学科学教师接受科学教学法变革的专业发展活动之后,在理解和实施课堂教学方面的差异,所依赖的理论框架是Interconnected Model of Teacher Professional Growth)
    拓展阅读
    • 课堂观察+事后访谈+聚类分析:Bergström, P. et al. (2022). Who's got the power? Unpacking three typologies of teacher practice in one-to-one computing classrooms in Finland. Computers & Education,178. https://doi.org/10.1016/j.compedu.2021.104396对芬兰4所学校1至6年级的15名教师的电子书包课堂进行研究,依据Bernstein的教学社会学理论,探索了技术环境下教师课堂实际组织方式的变化及教师如何解释他们的课堂实践。
    • 多重解释性案例研究方法(调查+访谈+观察+课程辅件): Kraft, A. R., Atieh, E. L., Shi, L., & Stains, M. (2024). Prior experiences as students and instructors play a critical role in instructors’ decision to adopt evidence-based instructional practices. International Journal of STEM Education, 11(1), 18. https://doi.org/10.1186/s40594-024-00478-3.【本研究旨在分析影响九名未来 STEM教师决定将 Evidence-based instructional practices (EBIPs) 纳入教学的个人因素以及具体EBIPs 的特征。本研究采用以教师为中心的系统改革模型(TCSR)和创新-决策过程模型两个理论框架】
  • 单元3 STEM教师的专业情意

    1. 元分析:Zhou, X. (2023). The effect of professional development on in-service STEM teachers’ self-efficacy: A meta-analysis of experimental .International Journal of STEM Education,10, 37.https://doi.org/10.1186/s40594-023-00422-xK-12教学环境下教师专业发展培训对提高在职STEM教师自我效能的有效性
    2. 系统性文献综述: Zhai, Y., Tripp, J., & Liu, X. (2024). Science teacher identity research: A scoping literature review. International Journal of STEM Education, 11(1), 20. https://doi.org/10.1186/s40594-024-00481-8.【本范围性文献综述涉猎了2000年至2023年间在同行评审的学术期刊上发表的48篇关于科学教师身份认同的实证研究文章。文献综述专注于从小学到高中各个职业发展阶段的科学教师身份认同,探讨了围绕科学教师身份认同的实证研究特征;身份认同的理论框架;科学教师身份认同的界定;以及主要研究发现。勾勒出了科学教师身份认同研究的演变趋势,并对这一研究领域进行了全面的评述,以期为未来研究与实践提供理论与方法论指引】
    3. 多层模型分析:Li, C. , Antonenko, P. D. , Ritzhaupt, A. D. , & Dawson, K. , et al. (2020). Exploring the influence of teachers' beliefs and 3d printing integrated STEM instruction on students' STEM motivation. Computers & Education, 158.https://doi.org/10.1016/j.compedu.2020.103983探讨教师信念和 3D 打印在科学课堂中的整合对学生科学、技术、工程和数学 (STEM) 学习动机的影响
    4. 三年个案的叙事探究法:Jiang, H., Wang, K., Wang, X. et al.(2021) Understanding a STEM teacher’s emotions and professional identities: a three-year longitudinal case study. International Journal of STEM Education, 8, 51. https://doi.org/10.1186/s40594-021-00309-9探究STEM 教师在 STEM 教育改革下如何从情感上构建自己的职业身份
    5. 个案研究法:Ds, A. , & Cc, B. . (2021). Teacher agency and learner agency in teaching and learning a new school subject, leaving certificate computer science, in ireland: considerations for teacher educationComputers & Education,174. https://doi.org/10.1016/j.compedu.2021.104291探讨计算机科学学科中教师能动性和学习者能动性之间的关系
    6. 前后均值差:Hammack, R., Yeter, I., Pavlovich, C., & Boz, T. (2024). Pre-service elementary teachers’ science and engineering teaching self-efficacy and outcome expectancy: exploring the impacts of efficacy source experiences through varying course modalities. International Journal of STEM Education, 11(1), 1-19.  https://doi.org/10.1186/s40594-024-00464-9 【探讨在科学方法课程中加入工程学的学习机如何影响职前教师的工程学与科学教学效能感和成果预期

    扩展阅读
    • 纵向研究: Nitzan-Tamar, O., & Kohen, Z. (2022). Secondary school mathematics and entrance into the STEM professions: A longitudinal study. INTERNATIONAL JOURNAL OF STEM EDUCATION, 9(1). https://doi.org/10.1186/s40594-022-00381-9.【研究以色列中学生从事 STEM 相关职业的各种途径,并根据各种人口和教育因素来描述每种途径的特点,以社会认知职业理论(Social Cognitive Career Theory, SCCT)的总体理论框架为基础】
    • 结构方程模型: Lai, C. , & Jin, T. . (2021). Teacher professional identity and the nature of technology integrationComputers & Education,175,(5)https://doi.org/10.1016/j.compedu. 2021.104314 【以中国大陆280名英语教师为研究对象,探究其在职业认同与在语言教学中的技术运用之间的关系


  • 单元4 STEM教师的专业发展——活动设计

    1. 系统性文献综述:Surahman,E. & Wang, T. (2023). In-service STEM teachers professional development programmes: A systematic literature review 2018–2022.Teaching and Teacher Education,135, 104326, https://doi.org/10.1016/j.tate.2023.104326. 【在职STEM教师专业发展项目
    2. 重复测量实验设计:Kong, S. C. , Lai, M. , & Sun, D. . (2020). Teacher development in computational thinking: design and learning outcomes of programming concepts, practices and pedagogyComputers & Education, 151, 103872. https://doi.org/10.1016/j.compedu.2020.103872以76名小学教师为对象,设计开发了2门课程,1门侧重于CT知识和教学法,1门侧重于教学实践和反思,结果提升了教师计算思维的概念和教学实践
    3. 混合研究:Mouza, C., Codding,  D. M., & Pollock, L. (2022). Investigating the impact of research-based professional development on teacher learning and classroom practice: Findings from computer science education. Computers & Education, https://doi.org/10.1016/j.compedu.2022.104530基于研究的专业发展对教师学习和课堂实践(计算机科学知识、教学法及技术)的影响
    4. 前后测准实验研究(多层次建模Kong, S. & Lai, M. (2022). Effects of a teacher development program on teachers' knowledge and collaborative engagement, and students' achievement in computational thinking conceptsBritish Journal of Educational Technology, https://doi.org/10.1111/bjet.13256探讨教师发展项目如何改变教师的内容知识和协作参与,进而影响学生计算思维概念的学习成就
    扩展阅读
    • 准实验性的非等价比较组设计+STEM知识多项选择前测/后测评估+独立样本t检验: Kelley, T. R., Sung, E., Han, J., & Knowles, J. G. (2023). Impacting secondary students’ STEM knowledge through collaborative STEM teacher partnerships. International Journal of Technology and Design Education, 33(4), 1563–1584. https://doi.org/10.1007/s10798-022-09783-w.【在完成为期两周的教师专业发展培训后,科学和工程技术教师实施了一个名为D-BAIT的示范STEM单元。进一步研究学生在科学和工程技术教师教授的综合STEM单元学习后,STEM内容知识成就的提高情况】
    • 混合研究:量表+反思+焦点小组访谈+现场观察日志:Irgens, G. A., et al (2023). Analyzing a teacher and researcher co-design partnership through the lens of communities of practice. Teaching and Teacher Education, 121.   https://doi.org/10.1016/j.tate.2022.103952探讨小学教师如何与研究人员共同构建知识,以更好地了解如何在共同设计RPP期间培养实践社区
    • 混合研究:Brouwer, et al. (2022). Effect of a person-centred, tailor-made, teaching practice-oriented training programme on continuous professional development of STEM lecturers. Teaching and Teacher Education,119: https://doi.org/10.1016/j.tate.2022.103848个性化培训项目对大学STM教师的短期和长期的影响评价培训效果参考了 Kirkpatrick四级评估模型】
    • 半结构访谈+焦点小组访谈:Affouneh S, Salha S, Burgos D, et al.(2020). Factors that foster and deter STEM professional development among teachers. Science Education,104:857–872. https://doi.org/10.1002/sce.21591了解教师对STEM教学专业发展的看法,并确定促进或阻碍教师专业发展成功的影响因素
  • 单元5 STEM教师的专业发展——技术路径

    1. 准实验研究:Chen, Y., Cao, L., Guo, L., & Cheng,J.M. (2022). Driving is believing: Using telepresence robots to access makerspace for teachers in rural areas. British Journal of Educational Technology, 53 (6): 1956-1975. https://doi.org/10.1111/bjet.13225探讨K-12 学校教师通过虚拟实地考察访问教育创客空间的两种不同方式(远程呈现机器人和录制的现场视频),研究虚拟实地考察以访问创客空间对 K-12 教师的体现、社交存在和参与的影响
    2. 准实验研究:Chen,Y., & Cao, L. (2022).Promoting maker-centred instruction through virtual professional development activities for K-12 teachers in low-income rural areas. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13183设计并实施了一个虚拟专业发展项目,旨在提高低收入农村地区K-12教师利用创客技术进行教学的知识、态度和信念,帮助教师做好将创客技术融入课堂教学的准备
    3. 干预研究、个人访谈:A YouTube video club for teacher learning: Empowering early childhood educators to teach STEM. British Journal of Educational Technology, 55(2): 605-624. https://doi.org/10.1111/bjet.13396引入一个针对香港女性幼儿教师的 YouTube 视频俱乐部,观看、分析和讨论 STEM 教学视频,参与者撰写反思并与同行讨论,就教学内容和策略交换意见
    4. 准实验研究,PLS-SEM):Ung, L-L. et al. (2022). Computational thinking for teachers: Development of a localised E-learning system. Computers & Education,177. https://doi.org/10.1016/j.compedu.2021.104379探讨开发本地化E-Learning系统(myCTGWBL)来培训教师计算思维技能的可行性
    5. 在线问卷调查: Carpenter, J. P., Morrison, S. A., Shelton, C. C., Clark, N., Patel, S., & Toma-Harrold, D. (2024). How and why educators use TikTok: Come for the fun, stay for the learning? Teaching and Teacher Education, 142, 104530. https://doi.org/10.1016/j.tate.2024.104530【该研究旨在分析415名教育从业者对于TikTok的使用模式及其背后的动因。研究结果表明:参与者倾向于将该社交媒体平台作为满足个人需求的工具,而非出于职业发展的考虑】