主题目录

  •      本课程面向教育技术学专业的硕士和博士研究生,聚焦K12阶段的CS-STEM教育(Computer Science-STEM),主要研读教育技术领域国际顶级期刊Computers & EducationInternational Journal of STEM Education、British Journal of Educational Technology、Journal of Computer Assisted Learning、Educational Technology Research and Development等发表的相关最新文章。本课程目标是掌握国际CS-STEM教育领域高水平研究的研究范式和写作方法,包括研究问题的提出,理论框架的构建,研究方法的设计,研究数据的分析,研究结果的讨论,以及研究结论的描述等等。在本课程学习中,学生需要每周独立阅读指定文献。


    • 单元1 计算思维——问题式学习

      1. 准实验研究(前-后1-后2单组/重复测量方差分析):Kwon, K., Ottenbreit-Leftwich, A.T., Brush, T.A. et al. (2021). Integration of problem-based learning in elementary computer science education: effects on computational thinking and attitudes. Educational Technology Research and Development, 69, 2761–2787. https://doi.org/10.1007/s11423-021-10034-3基于问题式学习培养小学生计算思维
      2. 准实验研究(控制组前-后测):Ma, H.*, Zhao, M., Wang, H. et al (2021). Promoting pupils’ computational thinking skills and self-efficacy: a problem-solving instructional approach. Educational Technology Research and Development,69(3):1599-1616. https://doi.org/10.1007/s11423-021-10016-5问题解决式学习培养小学生计算思维技能和自我效能】
      3. 准实验研究(实验组2个,对照组1个,协方差分析、滞后序列分析等):Hsiao, HS., Chen, JC., Chen, JH. et al. (2023). A study on the effects of using gamification with the 6E model on high school students’ computer programming self-efficacy, IoT knowledge, hands-on skills, and behavioral patternsEducational technology research and development, 71, 1821–1849. https://doi.org/10.1007/s11423-023-10216-16E教学模式培养高中生编程自我效能、物联网知识技能等

      扩展阅读
      • 等级线性模型:Awuor, N. O. et al. (2022).  Teamwork competency and satisfaction in online group project-based engineering course: The cross-level moderating effect of collective efficacy and flipped instruction. Computers & Education,176.  https://doi.org/10.1016/j.compedu.2021.104357
      • 准实验研究(大学生层次):Lai, CF., Zhong, HX., Chang, JH. et al.(2022) Applying the DT-CDIO engineering design model in a flipped learning programming course. Education Tech Research Dev, 70, 823–847. https://doi.org/10.1007/s11423-022-10086-z

    • 单元2 计算思维——配对编程与协作学习

      1. 元分析法:Lai. X. et al. (2021). Collaborative versus individual problem solving in computational thinking through programming: A meta-analysisBritish Journal of Educational Technology, https://doi.org/10.1111/bjet.13157【通过编程进行的计算思维教学中协作与个体问题解决对认知、社交和情感学习成果的影响】
      2. 准实验研究(前后测控制组/协方差分析)Wei, X., Lin, L., Meng, N., Tan, W., Kong, S., & Kinshuk. (2021). The effectiveness of partial pair programming on elementary school students' computational thinking skills and self-efficacy. Computers & Education, 160. https://doi.org/10.1016/j.compedu.2020.104023【部分结对编程对小学生计算思维技能和自我效能的影响】
      3. 调查研究(聚类分析法):Jiang, B., Zhao, W., Gu, X. et al. (2021). Understanding the relationship between computational thinking and computational participation: a case study from Scratch online community. Education Tech Research Dev ,69, 2399–2421. https://doi.org/10.1007/s11423-021-10021-8Scratch项目中的计算思维对用户参与的影响
      4. 新手学生的合作编程活动,比较了高成就组和低成就组的差异:Wu, B. et al. (2019). Analysing computational thinking in collaborative programming: A quantitative ethnography approach. Journal of Computer Assisted Learning, 35,(3):421-434.   https://doi.org/10.1111/jcal.12348 (量化民族志:话语分析和认知神经网络分析)
      扩展阅读

      • 元分析法Sun, L. , Hu, L. , & Zhou, D. . (2021). Which way of design programming activities is more effective to promote students' computational thinking skills? A meta-analysis. Journal of Computer Assisted Learning,(1). https://doi.org/10.1111/jcal.12545 (分析了讨论了结对编程相较独自编程的优势)
      • 准实验研究:Liu, C., Li, W., Huang, J., Lei, L., & Zhang, P. (2023). Collaborative programming based on social shared regulation: An approach to improving students’ programming achievements and group metacognitionJournal of Computer Assisted Learning, jcal.12828. https://doi.org/10.1111/jcal.12828
      • 准实验研究(大学Python课):Tan, J.,  Wu, L., & Ma,S. (2023). Collaborative dialogue patterns of pair programming and their impact on programming self-efficacy and coding performance. British Journal of Educational Technologyhttps://doi.org/10.1111/bjet.13412  (滞后序列、聚类分析和配对样本t检验)

    • 单元3 计算思维——游戏化学习


      1. 计算机科学教育中的游戏化学习(研究范畴的文献综述):Videnovik, M., Vold, T., Kiønig, L. et al. (2023). Game-based learning in computer science education: a scoping literature review. International Journal of STEM Education. 54 (10). https://doi.org/10.1186/s40594-023-00447-2 (包括教育的层次、游戏类型、计算机科学主题、教学策略等,尤其区分了游戏中学编程和和开发游戏学编程两种方式)

      2. 评估游戏化学习中的内隐计算思维(k-means聚类+回归分析+结构方程模型):Liu, T. (2024). Assessing implicit computational thinking in game‐based learning: A logical puzzle game study. British Journal of Educational Technology.  https://doi.org/10.1111/bjet.13443(本研究引入了一种创新的方法,通过游戏化学习中的各种显式因素来探索学生的内隐计算思维)

      推荐阅读
      • 游戏化学习中的目标设定:Nietfeld, J. L., & Hoffmann, K.F. (2023).The impact of goal assignment in a game-based learning environment. Journal of Computer Assisted Learninghttps://doi.org/10.1111/jcal.12919(8年学生,微生物的游戏化学习,实验研究,分别对目标导向进行前测、监测判断进行过程评估以及对娱乐性进行后测)
      • 游戏化学习中的反馈机制:Mao, P. et al. (2024). The effects of dynamic and static feedback under tasks with different difficulty levels in digital game-based learning. Internet and Higher Education. https://doi.org/10.1016/j.iheduc.2023.100923(大学生通过游戏学习编程,研究了针对不同任务难易程度的动态反馈和静态反馈对学习成就、内在动机、参与度以及认知负荷的影响)
    • 单元4 计算思维——思维导图

      1. 准实验研究(前后测控制组/单因素方差分析):Zhao,L. et al. (2022). Effect of different mind mapping approaches on primary school students’ computational thinking skills during visual programming learning. Computers & Education. 104445. https://doi.org/10.1016/j.compedu.2022.104445【探讨以Scratch为编程工具学习编程时思维导图对学生CT技能的影响,对比自我建构思维导图(CBS-MM)和支架式思维导图(COS-MM)两种方式哪个更能提高学生的CT技能】
      2. 准实验研究:Yang, T. & Lin, Z. (2024). Enhancing elementary school students' computational thinking and programming learning with graphic organizers. Computers & Education,209.104962 https://doi.org/10.1016/j.compedu.2023.104962【采用图形组织者(GOs)来帮助小学生进行计算思维和编程学习,检验其在提高学生计算思维、编程技能以及增强学习过程中流畅体验的有效性】
      拓展阅读
      • 探索性研究(单组-质性+量化):Sun, M. et al. (2022). How do students generate ideas together in scientific creativity tasks through computer-based mind mapping. Computers & Education, 176. https://doi.org/10.1016/j.compedu.2021.104359【中学生如何在科学创造性任务中通过运用相关的思维策略和在小组中构建基于计算机的思维导图进行社交,从而产生想法】
    • 单元5 计算思维——不插电活动

      1. 实验研究:Sigayret, K. et al. (2022). Unplugged or plugged-in programming learning: A comparative experimental study. Computers & Education,https://doi.org/10.1016/j.compedu.2022.104505【该研究探讨了插电和不插电编程学习对学生学习表现和动机的影响】
      2. 实验研究法(前-中-后测控制组/Mann-Whitney检验):Olmo-Muoz, J. D.  et al. (2020) . Computational thinking through unplugged activities in early years of primary educationComputers & Education, 150. https://doi.org/10.1016/j.compedu.2020.103832【评估不插电活动在小学早期阶段学生计算思维发展中的作用】
      3. 准实验研究法:Dağ, F. et al. (2023). The effect of an unplugged coding course on primary school students' improvement in their computational thinking skills. Journal of Computer Assisted Learning, 39(6), 1902-1918. https://doi.org/10.1111/jcal.12850【不插电编程课程对小学生计算思维技能的影响】

    • 单元6 计算思维——积木块Vs文本编程

      • 准实验:Sun, D., Looi, CK., Li, Y. et al. (2024). Block-based versus text-based programming: a comparison of learners’ programming behaviors, computational thinking skills and attitudes toward programming Educational Technology Research and Development . https://doi.org/10.1007/s11423-023-10328-8比较文本和积木编程对学生编程行为、计算思维以及编程态度的影响
      • 准实验研究(聚类分析、点击流分析、滞后序列分析:Sun, D., Ouyang, F., Li, Y. et al. (2024) . Using multimodal learning analytics to understand effects of block-based and text-based modalities on computer programming. Journal of Computer Assisted Learninghttps://doi.org/10.1111/jcal.12939积木编程和文本编程的多模态学习分析
      • Python编程中的迷思概念(准实验研究:Žanko, Ž.,  Mladenović,M., & Krpan,D. (2022). Analysis of school students' misconceptions about basic programming concepts. Journal of Computer Assisted Learning,38,(3). https://doi.org/10.1111/jcal.12643

    • 单元7 计算思维——影响因素

      • 结构方程模型Zhang, S., & Wong, G. K. W. (2024). Unravelling the underlying mechanism of computational thinking: The mediating role of attitudinal beliefs between personality and learning performance. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12900CT、编程态度、人格特征的关系
      • 文献综述法:Israel-Fishelson, R. & Hershkovitz, A. (2022).   Studying interrelations of computational thinking and creativity: A scoping review (2011–2020)Computers & Education, 176, https://doi.org/10.1016/j.compedu.2021.104353CT与创造性的关系
      • 前后测控制组准实验研究/多因素方差分析:Jiang, S., & Wong, G.K.W. (2022). Exploring age and gender differences of computational thinkers in primary school: A developmental perspective. Journal of Computer Assisted Learning, 1,(38),60-75. https://doi.org/10.1111/jcal.12591【小学计算思维技能发展中的年龄和性别差异
      • 调查研究-回归分析:Sun L.H., Hu, L.L.,& Zhou, D.H. (2022).Programming attitudes predict computational thinking: Analysis of differences in gender and programming experience. Computers & Education,181. https://doi.org/10.1016/j.compedu.2022.104457 编程态度与计算思维技能之间的关系性别和编程经验差异分析
      扩展资源
      • 性别差异(元分析):Yu, W. et al. (2023). Interventions for gender equality in STEM education: A meta-analysis. Journal of Computer Assisted Learning . https://doi.org/10.1111/jcal.12928
      • 性别差异(准实验研究):Liu, Y., Qin, C., & He, H. (2024). 'Can I code?' Exploring rural fifth-grade girls' programming self-efficacy and interest in a developing country. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12964 【 研究从教育公平的角度关注发展中国家(中国)农村女孩的编程学习。调查了这些女孩的自我效能感和对编程的兴趣。】
    • 单元8 计算思维——跨学科教学

      1.  民族志研究(编程+化学)Aslan, U., Horn, M., & Wilensky, U. (2023). Why are some students “not into” computational thinking activities embedded within high school science units? Key takeaways from a microethnographic discourse analysis study. Science Education, 1-28. https://doi.org/10.1002/sce.21850 【化学教育、计算思维、公平、社会认同、代表性不足
      2.  案例分析(物理+工程):Fernandez, C., Hochgreb-Haegele, T., Eloy, A., & Blikstein, P. (2024). Making for science: a framework for the design of physical materials for science learningEducational Technology Research and Development72, 59-82.  https://doi.org/10.1007/s11423-023-10340-y【科学学习中的物理材料设计以及其与学生认知能动性之间的关系】

    • 单元9 计算思维——教学方法

      1.  定性研究(半结构化访谈+主题模型;3C模型)Martin, D. A., Curtis, P., & Redmond, P. (2024). Primary school students' perceptions and developed artefacts and language from learning coding and computational thinking using the 3C model. Journal of Computer Assisted Learninghttps://doi.org/10.1111/jcal.12972【在3C模型中,所融入的教学法和顺序方法不仅显著提升了学生的参与热情,还极大地优化了课程的学习成效。这一模式为教师们提供了一个既连贯又符合学生年龄特点的教学框架,通过巧妙利用物理计算设备和数字编码平台,巧妙引入编码的基本概念,从而进一步培养了小学生的计算思维能力,使他们不再局限于机械的程序化学习和死记硬背,真正实现了学习的深度和广度的双重提升】

    • 单元10 教育机器人

      1. 文献综述:Darmawansah, D., Hwang, GJ., Chen, MR.A. et al. (2023). Trends and research foci of robotics-based STEM education: a systematic review from diverse angles based on the technology-based learning model. International Journal of STEM Education, 10, 12 . https://doi.org/10.1186/s40594-023-00400-3【机器人技术在STEM教育中的作用和研究趋势】
      2. Ouyang, F., Xu, W. The effects of educational robotics in STEM education: a multilevel meta-analysis. IJ STEM Ed 11, 7 (2024).https://doi.org/10.1186/s40594-024-00469-4【教育机器人在K-16教育中的总体效果
      3. 文献综述(无人机):Yeung, et al. (2024). A systematic reviewof Drone integrated STEM education at secondary schools(2005-2023): Trends pedagogies, and learning outcomesComputers & Education. https://doi.org/10.1016/j.compedu.2024.104999【无人机整合STEM教育在不同学术水平上的应用,特别侧重于中等教育领域】
      4. 准实验研究:Socratous, C., Ioannou, A. (2021). Structured or unstructured educational robotics curriculum? A study of debugging in block-based programming. Education Tech Research Dev 69, 3081–3100. https://doi.org/10.1007/s11423-021-10056-x【结构化和非结构化教育机器人课程对学生编程错误频率、调试能力和学习参与度的影响】
      5. 准实验研究:Zhong, BC., & Xia LY. (2022). Effects of new coopetition designs on learning performance in robotics education. Journal of Computer Assisted Learning. 1,(38). https://doi.org/10.1111/jcal.12606【不同合作竞争设计对学生机器人教育中小组内合作和小组间竞争的影响】
      6. 准实验研究: Sisman,B., Kucuk, S., & Ozcan,  N. (2022).   Collaborative behavioural patterns of elementary school students working on a robotics projectJournal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12659教育机器人在协作学习中的作用
      扩展阅读
      • 文献综述(幼儿园):Rapti,S., & Sapounidis,T.(2023). “Critical thinking, Communication, Collaboration, Creativity in kindergarten with Educational Robotics”: A scoping review (2012–2023) . Computers & Education,210, 104968. https://doi.org/10.1016/j.compedu.2023.104968
      • 准实验研究(出声思维、学术反思、学习表现):Chichekian, T. et al. (2023). Experimenting with computational thinking for knowledge transfer in engineering robotics. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12921(虚拟Arduino机器人培养工程类大学生计算思维的应用研究,设计了6个机器人活动)
      • Montuori, C., Filippo, G., Altoé, G., & Arfé, B. (2024). The cognitive effects of computational thinking: A systematic review and meta-analytic studyComputers & Education210,104961https://doi.org/10.1016/j.compedu.2023.104961
    • 单元11 开源硬件

      1. 创客类STEM综合(调查研究-结构方程模型PLS):TKu, CJ., Hsu, YS., Chang, MC. et al. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9, 3. https://doi.org/10.1186/s40594-021-00321-z
      2. (编程+音乐)(准实验研究:Petrie, P. (2022). Programming music with Sonic Pi promotes positive attitudes for beginnersComputers & Education,179, 104409. https://doi.org/10.1016/j.compedu.2021.104409
      扩展阅读
      • (将能力框架KSA和布鲁姆目标分类结合在一起,测量学生的STEM能力)(针对英语专业大学生的准实验研究,让学生做电子音乐笔):Hu,C. , Yeh, H. , & C. N. (2020).  Enhancing STEM competence by making electronic musical pencil for non-engineering students. Computers & Education, 150.  https://doi.org/10.1016/j.compedu.2020.103840

    • 单元12 人工智能

      1. 准实验研究(课堂观察、教师访谈、文件/作品):Yang et al. (2023). Artificial intelligence education for young children: A case study of technology-enhanced embodied learning. Journal of Computer Assisted Learning, https://doi.org/10.1111/jcal.12892在智能代理支持下儿童如何参与人工智能素养活动
      2. 准实验研究(调查和访谈):Su, J., & Yang, W. (2024). AI literacy curriculum and its relation to children’s perceptions of robots and attitudes towards engineering and science: An intervention study in early childhood education. Journal of Computer Assisted Learning, 40(1), 241–253. https://doi.org/10.1111/jcal.12867AI素养课程对幼儿园机器人感知和工程、科学的态度
      3. 准实验研究(平台监控日志记录学生的屏幕行为;视频编码分析+问卷调查):Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would ChatGPT-facilitated programming mode impact college students’ programming behaviors, performances, and perceptions? An empirical study. International Journal of Educational Technology in Higher Education, 21(1), 14. https://doi.org/10.1186/s41239-024-00446-5【ChatGPT,编程学习,行为分析,感知,大学生】
    • 单元13 3D打印

      1. 混合研究(观察、访谈、反思日志等质性数据):Falloon, G., Forbes, A., Stevenson, M. et al. (2022). STEM in the Making? Investigating STEM Learning in Junior School MakerspacesResearch in Science Education, 52, 511–537. https://doi.org/10.1007/s11165-020-09949-3
      2. 多层模型分析:Cheng, L. , Antonenko, P. D. , et al. (2020). Exploring the influence of teachers' beliefs and 3D printing integrated STEM instruction on students' STEM motivationComputers & Education, 103983. https://doi.org/10.1016/j.compedu.2020.103983
      3. 准实验研究(三个实验组,前后测+操作日志和作品):Dasgupta, C. , Magana, A. J. , & Vieira, C. . (2019). Investigating the affordances of a CAD enabled learning environment for promoting integrated stem learning. Computers & Education, 129, 122-142. https://doi.org/10.1016/j.compedu.2018.10.014

    • ETR&D创客教育特刊(2024)

      1. 案例分析:Thompson, N. (2023). Weaving in: shifts in youth mathematical engagement through weaving. Educational Technology Research and Development, 72, 15-39. https://doi.org/10.1007/s11423-023-10316-y. 【在数学课堂中引入编织活动来促进数学学习
      2. 案例分析(作品+访谈):Axelrod, D., & Kahn, J. (2023). “Then you go to snap”: Multimodal making of digital comics in a language arts high school classroom. Educational Technology Research and Development, 72, 41-57. https://doi.org/10.1007/s11423-023-10285-2. 【跨学科课堂设计】
      3. 案例分析(课程设计+课程计划):Fernandez, C., Hochgreb-Haegele, T., Eloy, A., & Blikstein, P. (2024). Making for science: a framework for the design of physical materials for science learning. Educational Technology Research and Development, 72, 59-82.  https://doi.org/10.1007/s11423-023-10340-y. 【科学学习中的物理材料设计以及其与学生认知能动性之间的关系】
      4. 案例分析(课程+定性访谈+定量前后测):Hsu, P. S., Lee, E. M., & Smith, T. J. (2024). Exploring non-dominant youths' engineering identity through productive struggle in a making summer program. Educational Technology Research and Development, 72, 83-107.  https://doi.org/10.1007/s11423-023-10299-w. 【创客活动中的生产性斗争有可能促进学习者对工程知识和工程工具的学习】
      5. 实验研究(独立样本t检验+相关性分析):Davis, R. L., Schneider, B., Rosenbaum, L. F., & Blikstein, P. (2024). Hands-on tasks make learning visible: a learning analytics lens on the development of mechanistic problem-solving expertise in makerspaces. Educational Technology Research and Development, 72, 109-132. https://doi.org/10.1007/s11423-023-10318-w. 【研究探讨了高中生学习者参加为期一年的数字制造课程如何影响解决问题的能力】
      6. 准实验研究(配对样本 t 检验+Friedman 检验和事后 Wilcoxon 符号秩检验):Fegely, A., Gleasman, C., & Kolski, T. (2024). Evaluating educational robotics as a maker learning tool for pre-service teacher computer science instruction. Educational Technology Research and Development, 72, 133-154.  https://doi.org/10.1007/s11423-023-10273-6. 【研究强调了将与 TPACK 一致的 CS 教学整合到 EPP 方法课程中的重要性】
      7. 案例分析(多案例研究设计+访谈编码):Caratachea, M., & Monty Jones, W. (2024). Making in virtual reality environments: A case study of K-12 teachers’ perceptions on the educational affordances of virtual reality for maker-centered learning. Educational Technology Research and Development, 72, 155-180.  https://doi.org/10.1007/s11423-023-10290-5. 【为VR 在 K-12 环境中的整合提出了一个面向教师和学生的模型】
      8. 调查研究(相关性分析+主题分析):Cheng, L., Antonenko, P. D., & Ritzhaupt, A. D. (2024). The impact of teachers' pedagogical beliefs, self-efficacy, and technology value beliefs on 3D printing integration in K-12 science classrooms. Educational Technology Research and Development, 72, 181-208. https://doi.org/10.1007/s11423-023-10276-3.【教师的教学法、自我效能感和技术价值信念与其3D打印整合实践的关系】
      9. 自然主义观察法(naturalistic observational methods):Kim, S. H., & Simpson, A. (2024). Parents' epistemic supports during home-based engineering design tasks: opportunities and tensions through the use of technology. Educational Technology Research and Development, 72, 209-238. https://doi.org/10.1007/s11423-023-10322-0.【研究以引导参与的概念为基础,将工程学习和创客学习通过多种互动共同构建】
      10. 探索性案例研究(exploratory case study):Miliou, O., Adamou, M., Mavri, A., & Ioannou, A. (2024). An exploratory case study of the use of a digital self-assessment tool of 21st-century skills in makerspace contexts. Educational Technology Research and Development, 72, 239-260. https://doi.org/10.1007/s11423-023-10314-0.【创客空间中使用数字自我评估工具】